Q%’@%‘, EH2750 Computer Applications in

FKTHS

G vy Power Systems, Advanced Course.
R’

ROYAL INSTITUTE
OF TECHNOLOGY

Lecture 4

Professor Lars Nordstréom, Ph.D.

Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Outline of the Lecture

» Repeating where we are right now
- Intelligent Agents of various types
- How does this appear in JACK?

» Searching for solutions (Al book - Ch 3)

e Informed Searches (Excerpt)

* Planning

What is an Intelligent Agent?

* The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

e Thus: an intelligent agent is a computer system capable
of flexible autonomous action in some environment in
order to meet its design objectives

input System

Environment

The discussion so far

o Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions

o Chapters 3, 4, & 5 describe three different approaches

to describing and developing the apparent Intelligence
in the agents.

- Chapter 3 - Deductive Reasoning Agents
- Chapter 4 - Practical Reasoning Agents
- Chapter 5 - Reactive (and Hybrid Agents)

» Today, we take a deeper look at searching & planning

Practical Reasoning

* Human practical reasoning consists of two activities:

- deliberation
deciding what state of affairs we want to achieve

- means-ends reasoning
deciding how to achieve these states of affairs

» The outputs of deliberation are intentions

What are Inten- What is Plans
possible the best

things I
could do?

way to do
it?

Planning is a big thing in Al

goal/ state of possible
intention/ environment action
task| |
4 I
planner
\ J

|

plan to achieve goal

ROYAL INSTITUTE

OF TECHNOLOGY

PlanSelected

SelectPlan

hanigles hantle

StartThinking

Outline of the Lecture

» Searching for solutions (Al book - Ch 3)

Tree Search Algorithms

* Tree searching is a classic structure for finding
solutions to a problem.

» The program searches through a Tree (graph) to find
a solutions

o States are the nodes in the tree and actions are the
edges

* Nodes are expanded into sucessor nodes using a
successor function

*» Which nodes to expand are determined by which
search strategy the program has implemented.

A Plan

<
<::><j 4 al42

N _

a7 () =d

* What is a plan?
A sequence (list) of actions, with variables replaced by
constants.

al

ROYAL INSTITUTE
OF TECHNOLOGY

Practical Reasoning Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
inputs: percept, a percept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, 1mitially null
problem, a problem formulation

state «— UPDATE-STATE(stale, percept)

if seq 1s empty then do
goal «— FORMULATE-GOAL(state)
problem «+— FORMULATE-PROBLEM(state, goal)
seq «— SEARCH(problemn)

action «FIRST(seq)

seq «— REST(seq)

return action

=1

First some assumptions:
The agent and the environment

* In Lecture 2, we discussed the characteristics of the
environment the agent exists within

- Accessible vs Inaccessible

- Deterministic vs non-deterministic
- Static vs Dynamic

- Continuous vs Discrete

* For the searching & planning discussion we assume:
- Accessible, Deterministic, Static & Discrete

Environments
Accessible vs. inaccessible

* An accessible environment is one in which the agent
can obtain complete, accurate, up-to-date information
about the environment’ s state

» Most moderately complex environments (including, for
example, the everyday physical world and the
Internet) are inaccessible

- Subsets of the real-world can of course be made
accessible

- Measurements in a Power grid (U,I,P,Q, states, ¢ etc)

* The more accessible an environment is, the simpler it
is to build agents to operate in it

Environments -
Deterministic vs. non-deterministic

* A deterministic environment is one in which any
action has a single guaranteed effect — there is
no uncertainty about the state that will result
from performing an action

* The physical world can to all intents and
purposes be regarded as non-deterministic

- Again, subsets of the real world can appear
deterministic

* Non-deterministic environments present greater
problems for the agent designer

Environments
Static vs. dynamic

» A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the
agent

* A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond
the agent’ s control

» Other processes can interfere with the agent’s

* The real world is obviously a highly dynamic environment
- But is a distribution grid a highly dynamic environment?

Environments
Discrete vs. continuous

* An environment is discrete if there are a fixed, finite
number of actions and percepts in it

* A chess game is an example of a discrete
environment, and taxi driving an example of a
continuous one

e Continuous environments have a certain level of
mismatch with computer systems

* Discrete environments could in principle be handled
by a kind of “lookup table”

16

Problem Formulation

» Before starting the search for a solution, we need to
define the problem we are trying to solve

* A Problem formulation has the following parts:
- An initial state

- Actions possible in terms of successor
function, that is a list of tuples:

 (Action, Successor)
- A goal state and a test if we are at the goal
- A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK,
but formally not correct at this stage.

ROYAL INSTITUTE

OF TECHNOLOGY

Example - Searching in Romania

] Oradea
Neamt
i o 87
Zerind
15 151 :
- lasi
Arad gl
\ 92
- Sibiu 09 Fagaras
118 . [Vaslui
80
ARG,
py Timisoara Rimnicu Vilcea
142
1 . , 5 211
11 7 Lugoj Pil
70
&5 : . o Hirsova
5] Mehadia 101 Urziceni
: 86
L 138 Bucharest
Drobeta 120
90
Craiova # Giurglu Eforie
Figure 32 A simplified road map of part of Romania.

Problem Formulation - Romania

e Initial State In(Arad)

e Actions possible Successor function F(state)

For example:

- F(Arad) = ((Go(Sibiu),In(Sibiu)), (Go
Timisoara),In (Timisoara)),
(Go(Zerind),In(Zerind))

*» The Goal test In(Bucharest)

e Path cost Distances in Kilomters.

General Idea of Search algorithm

ROYAL INSTITUTE
OF TECHNOLOGY

function TREE-SEARCH(problemn, strategy) refurns a solution, or failure
initialize the search tree using the initial state of problem
ioop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Figure 3.7 Aninformal description of the general tree-search algorithm.

So, which search strategy should we use?

Quality of Problem Solutions Strategies

* How do we rate one strategy over another

» Completeness
- Is the strategy guaranteed to find a solution?

o Optimality

Does the strategy find the solution with the lowest path cost?
» Space complexity

How much memory is needed bythe strategy
* Time complexity

How long time does it take to find the goal using the strategy

Measuring Complexity

» The complexity of the solution in time & space
represents the CPU processing time, and memory
needs for the algorith.

» Measurement (indices for complexity) are:

- b — branchingfactor, maximum number of sucessors to
any node.

- d - depth, number of layers to reach the first optimal
solution

- m — maximum length that a path can have.

Some typical (uninformed) strategies

* Breadth First Search

e Uniform cost (breadth first) Search
» Depth First Search

» Backtracking Search

* Depth Limited Depth First Search
o [terative Deepening search

ROYAL INSTITUTE
OF TECHNOLOGY

General tree search algorithm

function TREE-SEARCH(problemn, fringe) returns a solution, or failure

fringe « INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if EMPTY?(fringe) then return failure
node — REMOVE-FIRST(fringe)
if GOAL-TEST| problem] applied to STATE[node] succeeds
then return SOLUTION(node)
fringe — INSERT-ALL(EXPAND(node, problem),fringe)

function EXPAND(node, problem) returns a set of nodes

successors « the empty set
for each (action,result)in SUCCESSOR-FN| problem|(STATE| node|) do
S« anew NODE
STATE| 8]+ result
PARENT-NODE| 8] < node
ACTION|s] < action
PATH-COST[3] «— PATH-COST[node] + STEP-COST(STATE| node|, action, result)
DEPTH[s]« DEPTH[node] + |
add § to successors
return successors

ey

Where....

ROYAL INSTITUTE
OF TECHNOLOGY

* We implement the nodes in the tree as a queue.

* And implement the following functions to work on the queue.

o MAKE-QUEUE(element, ...) creates a queue with the given element(s).

e EMPTY?(queue) returns true only if there are no more elements in the queue.

e FIRST(queue) returns the first element of the queue.

& REMOVE-FIRST(queue) returns FIRST(queue) and removes it from the queue.

o INSERT(element, queue) inserts an element into the queue and returns the resulting
queue. (We will see that different types of queues insert elements in different orders.)

e INSERT-ALL(elements, queue) inserts a set of elements into the queue and returns the
resulting queue.

-;'\
(R)
R

| -

Figure 3.10 Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker. |

» The queue of Nodes is a FIFO queue (First in First Out)
o If d and b are limited, then BFS is Complete
o Optimal only if all Path costs are similar at same level.

o Unfortunately very memory and time-consuming, i.e. Complex

- Number of nodes generated (memory need)
b+0%+03+--- + 0%+ (0! — b) = O(b*Y).

Uniform Cost Search

e Utilising the information about Path cost to select
which path to follow.

{

g
)
L)
@

o If all Path costs are equal, this is equal to Breadth
First Search

oy

DQ% = Q&QD
FKTHE

VETENSKAP

oy Depth First Search - I

ROYAL INSTITUTE
OF TECHNOLOGY

Depth First Search - II

» The fringe is implemented as a LIFO (Last in First Out)
or commonly known as stack.

* Very modest memory requirements, only one path
needs to be stored, since paths can be discarded after
search to end.

- Memory need is b*m +1 << O(bd*l)

* DFS is not complete, since it can get stuck in loops

* DFS is not optimal, since it can find a solution, deep
down one part of the tree, even if optimal solution is
higher.

Backtracking Search

e Variant of Depth First Search, where only one of a
nodes successors is generated before moving on to
that successor.

» Additionally, we do not keep the pre-decessor states
in memory either, they are regenerated as we go
back.

» This leaves un-expanded Nodes higher up, that must
be recorded.

* Even less memory requirements — O(m)

Depth limited search

* By setting an 1 (length), that limits the maximum
depth that a DFS can go.

» Basically, when the path length reaches 1, we do not
expand further successors

» Basic DFS can be considered as having infinite 1

* Basing 1 on some knowledge about the problem can
be useful, this is an example of heuristics

ROYAL INSTITUTE
OF TECHNOLOGY

Iterative Deepening DFS

fllll(‘tiOll I’I‘ER.A’I\IVE‘DEEPENING'S EARCH(pT’ObIE‘m.) l‘etums a Solution., or failllre
inputs: problem, a problem

for depth — 0 to o do
result — DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Figure 3.14 The iterative deepening search algorithm, which repeatedly applies depth-
limited search with increasing limits. It terminates when a solution 1s found or if the depth-
limited search returns failure, meaning that no solution exists.

Do a DFS with | =1
o If No solution found, set =2 do same thing again.

» Repeated creation of states at higher levels in the tree
is @ small cost compared to the benefits gained by
combining DFS and BFS.

» Preferred uninformed method, if state space is
unknown

oy

%‘g? = %%9
FXKTHY

VETENSKAP
38 OCH KONST 9%

e

ROYAL INSTITUTE
OF TECHNOLOGY

Limit=0 LCN B

Limit = 1 LoN

a4
rel

Limit = 2 Lok

g ‘.
> \
s - o~ -
- . [
i f<7] \
prd L 3 W, r
r ‘e 5
A LT
C Xee e 2w \
viag A1) Lad N N 1Dy W IR SR 5
B L LR e e g

Figure3.15 Four iterations of iterative deepening search on a binary tree.

Comparison of Search Strategies

Criter: Breadth- Uniform- Depth- Depth- Iterative Bidirectional
ienen First Cost First Limited Deepening (if applicable)

Complete? Yes® Yes"'i’ No No Yes® Yes®?

Time O™ o™y gpm) o O(b*) O@?)

Spree | O*) OGMHE) Gy 0wy OB 0@

| Optimal? Yes© Yes No No Yes© Yes™4

Figure 3.17 Evaluation of search strategies. b is the branching factor; d is the depth of
the shallowest solution; m is the maximum depth of the search tree; 1 is the depth limat.
Superscript caveats are as follows: * complete if b is finite; ? complete if step costs > ¢ for
positive €; © optimalif step costs are all identical; % if both directions use breadth-first search.

How to avoid repeated states?

“If an algorithm forgets its past, it is
doomed to repeate it”

e Simple answer is, keep track if a state has been
expanded previously.

Graph Search algorithm

ROYAL INSTITUTE
OF TECHNOLOGY

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed « an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if EMPTY?(fringe) then return failure
node «— REMOVE-FIRST(fringe)
if GOAL-TEST| problem|(STATE| node|) then return SOLUTION(node)
if STATE|node] is notin closed then
add STATE|node] to closed
fringe «— INSERT-ALL(EXPAND(node, problem), fringe)

Figure3.19 The general graph-searchalgorithm. The set closed can be implemented with
a hash table to allow efficient checking for repeated states. This algorithm assumes that the
first path to a state § 1s the cheapest (see text).

Outline of the Lecture

* Informed Searches (Excerpt)

Heuristics

» Often, we (the programmer) has some knowledge
about the problem we are asking the agent (the
computer) to solve.

e We can add different sorts of clever heuristics to our
algorithm.

» Essentially, we use an evaluation function £(n) to
select which successor node to expand, creating a
priority queue, where f(state) is the ranking of the

nodes.

* Normally node the lowest value (distance to goal) is
expanded first.

gy Greedy
ey L 17SE

OF TECHNOLOGY

» GFS always selects
the node with
apparent cheapest
solution to reach
goal.

e In Romania, we set
for example:

* h,,=shortest
line distance

* Always expand
node with lowest
h

SLD

(a) The initial state

(b) After expanding Arad

253 329 374

(c) After expanding Sibiu

Figure 4.2 Stages in a greedy best-first search for Bucharest using the straight-line dis-
tance heuristic /151, p- Nodes are labeled with their h-values.

A>|<

» A variant of Greedy First Search is A*

e Uses the evaluation function £(n) = h(n)+g(n)
* Where g(n) is the cost to get to where we are
* And h(n) is the estimated cost to reach goal.

ap

Sy,
FKTHY

VETENSKAP
38 OCH KONST 9%

e

ROYAL INSTITUTE
OF TECHNOLOGY

A* example

(a) The initial state

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

449=75+374

591=3384253 450=45040 526=366+160 417=317+100 353=300+253

(f) After expanding Pitesti

449=75+374

418241840 615=455+160 607=414+193

Figure 4.3 Stages in an A* search for Bucharest. Nodes are labeled withf = ¢ + h. The
h values are the straight-line distances to Bucharest taken from Figure 4.1.

Outline of the Lecture

* Planning

Planning approaches

» STRIPS based effort at a switching problem

* We need a problem definition

Problem Formulation

» Before starting the search for a solution, we need to
define the problem we are trying to solve

* A Problem formulation has the following parts:
- An initial state

- Actions possible in terms of successor
function, that is a list of tuples:

 (Action, Successor)
- A goal state and a test if we are at the goal
- A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK,
but formally not correct at this stage.

The Switching Ontology

*To represent this environment, need an ontology
Conducting(x) Circuit Breaker x is conducting
Breaking(x) CB x is breaking
LightsOn(y) Load vy is on

e The closed world assumption is implicitly valid.

Representing Actions

» Actions are represented using a technique that was
developed in the STRIPS planner

e Each action has:

- a hame
which may have arguments

- @ pre-condition list
list of facts which must be true for action to be executed

- a delete list
list of facts that are no longer true after action is performed

- an add list
list of facts made true by executing the action

Each of these may contain variables

Actions in the problem

e Using STRIPS notation
» Closing Breaker x description is:

- Name:
- Pre:
- Add:
- Del:

Close (x)
Breaking(x)
Conducting (x)
Breaking (Xx)

ROYAL INSTITUTE
OF TECHNOLOGY

So lets try this!

Outline of the Lecture

» Repeating where we are right now
- Intelligent Agents of various types
- Some words om JACK development

» Searching for solutions (Al book - Ch 3)

e Informed Searches (Excerpt)

* Planning

ROYAL INSTITUTE
OF TECHNOLOGY

Backup slides

The Blocks World

—
A | |

B C

o We' ll illustrate the techniques with reference to the blocks world
Contains a robot arm, 3 blocks (A, B, and C) of equal size, and a
table-top

The Blocks World

* Here is a representation of the blocks world described
above:
Clear(A4)
On(A, B)
OnTable(B)
OnTable(C)

» Use the closed world assumption: anything not stated
is assumed to be false

T

The Blocks World

* A goal is represented as a set of formulae

* Here is a goal:
OnTable(4) n OnTable(B) A OnTable(C)

—

4-53

The Blocks World

» Actions are represented using a technique that was
developed in the STRIPS planner

e Each action has:

- a hame
which may have arguments

- @ pre-condition list
list of facts which must be true for action to be executed

- a delete list
list of facts that are no longer true after action is performed

- an add list
list of facts made true by executing the action

Each of these may contain variables

The Blocks World Operators

| |
A

B

eExample 1:
The stack action occurs when the robot arm places
the object x it is holding is placed on top of object y.
Stack(x, y)
pre Clear(y) n Holding(x)
del Clear(y) n Holding(x)
add ArmEmpty A On(x, y)

The Blocks World Operators
““FExample 2:
The unstack action occurs when the robot arm picks
an object x up from on top of another object y.
UnStack(x, y)

pre On(x, y) A Clear(x) n ArmEmpty

del On(x, y) A ArmEmpty

add Holding(x) n Clear(y)
Stack and UnStack are inverses of one-another.

-

| |
A

The Blocks World Operators

sExample 3:

The pickup action occurs when the arm picks
up an object x from the table.

Pickup(x)
pre Clear(x) A OnTable(x) A ArmEmpty
del OnTable(x) A ArmEmpty
add Holding(x)

sExample 4:

The putdown action occurs when the arm
places the object x onto the table.

Putdown(x)
pre Holding(x)
del Holding(x)

add Clear(x) A OnTable(x) A ArmEmpty

